Difference between revisions of "Cfengine3 Messaging"
(→Basic patterns) |
(→Exclusive Pair) |
||
Line 100: | Line 100: | ||
== Push/Pull == |
== Push/Pull == |
||
== Exclusive Pair == |
== Exclusive Pair == |
||
+ | <hr> |
||
+ | Return to: [[Cfengine]] |
Revision as of 18:12, 7 December 2015
> what would be killer is a combination of the latest cfengine > (with promise theory) and 0mq.
Source: http://lists.zeromq.org/pipermail/zeromq-dev/2011-February/009491.html
This part of the Webhuis CFEngine initiative is research and therefore subject to change. :-)
It is the objective to have messaging incorporated in CFEngine and thus enabling nodes, by cf-agent that is, to send out messages to whatever listeners out there. The listeners can be cf-messages daemons or other nodes configured to process messages delivered by CFEngine Nodes.
CFEngine will need to implement a new promise type: messages:.
Parts of the works is to be transferred to and discussions will take place on:
https://github.com/Webhuis/Data
So let's go and deliver that kill!
Contents
0mq
The search for a suitable messaging mechanism eventually led to 0mq, just a library not an application. Could it be less in weight?
For reasons of symplicity the code examples, so far are in Python. CFEngine is independent of anything but libc and thus the end results of CFEngine messaging have to be developed in C.
Basic patterns
ZeroMQ comes with five basic patterns
- Synchronous Request/Response
- Asynchronous Request/Response
- Publish/Subscribe
- Push/Pull
- Exclusive Pair
Nodes carry different kinds of information
- Common information
- Static information
- Dynamic Information
- State Information
In the analysis use cases of types of messages has to be mapped on the basic patterns. The listeners mirror the nodes mappings.
Synchronous Request/Response
Client Requests
socket = context.socket(zmq.REQ) socket.connect("tcp://wbhs-pkg.webhuis.nl:8080") # Do 10 requests, waiting each time for a response print("Sending request %s ..." % request) socket.send(b"Hello") # Get the reply. message = socket.recv() print("Received reply %s [ %s ]" % (request, message))
Server Replies
socket = context.socket(zmq.REP) socket.bind("tcp://10.68.71.184:8080") # Wait for next request from client message = socket.recv() print("Received request: %s" % message) # Send reply back to client socket.send(b"World")
Asynchronous Request/Response
Publish/Subscribe
Server publishes
ctx = zmq.Context() publisher = ctx.socket(zmq.PUB) publisher.bind("tcp://10.68.71.184:5556") time.sleep(5) sequence = 0 id = 0 data =1000 while sequence < 20: id += 1; data += 1000; publisher.send("%i %i %i" % (sequence, id, data)); sequence += 1
Client subscriber receives
context = zmq.Context() socket = context.socket(zmq.SUB) print("Collecting updates from server...") socket.connect("tcp://10.68.71.184:5556") socket.setsockopt(zmq.SUBSCRIBE, b'') for update_nbr in range(5): string = socket.recv_string() print string
Output
0 1 2000 1 2 3000 2 3 4000 3 4 5000 4 5 6000
Push/Pull
Exclusive Pair
Return to: Cfengine